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ABSTRACT: Three different models were used for the
description of viscoelastic, yielding, and hardening stages of
the mechanical behavior of a network polymer. As a repre-
sentative response we get unidirectional loading test at a
wide range of strain rates with the appearance of a distinct
yielding point, strain softening, and strain hardening. The
present analysis shows that Rubin’s kinematics formulation

appears to have some benefits in contrast to the other two
approximations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci
97: 2032–2046, 2005
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INTRODUCTION

Generally speaking, almost all polymers exhibit an
interesting “peculiarity” (due to transition phenom-
ena): they could expose every kind of behavior like
that of a glassy solid, an elastic elastomer, or a viscous
liquid according to temperature, time scale of testing,
and history of the specimen or, in a most astonishing
manner, all these appearances could coexist in a more
complicated response as a result of specific excitation
conditions. The description of each behavior demands
different approximation and mathematical formula-
tion.1,2

With regard to linear viscoelasticity in polymers,
Boltzmann’s superposition principle2 or, equivalently,
general differential equations can be used as constitu-
tive equations for stress–strain relations.2–4 In the sec-
ond case, the description of viscoelastic response
could arise through models constructed from elastic
springs and viscous dashpots. As far as nonlinear
viscoelasticity2,4,5,6,7 develops, which frequently is ex-
hibited by most polymers, we should be faced with
the help of approximated theories based on a molec-
ular, rheological, and/or empirical basis, like
Schapery representation,2 the Kohlraush–Williams–
Watts equation,4 stress-clock function,7 or Eyring’s
viscous theory.2

Temperature, strain rate, pressure, and some other
parameters affect significantly the general mechanical

behavior of polymers and so their plastic response.1,2

But, although polymers cannot be considered ideal
plastic materials, their yielding behavior could, in a
first approximation, be faced through the theories of
ideal plasticity as long as these parameters remain
constant and conditions are selected so adiabatic heat-
ing does not take place. Through experimental testing
work, it has been confirmed that the modified Mises
criterion finds extensive application in the case of
polymers.2 In many cases nonlinear viscoelasticity
could be used to approximate the polymer yield pro-
cess,1 e.g., through the relation of Schapery and the
KWW equation for the representation of a wide relax-
ation time distribution (spectrum). Correspondingly,
Eyring’s viscous theory could be extended to describe
also the process of yield, but the obscure terms and the
lack of strain softening terms are some of its disad-
vantages. Argon8 has suggested that the yield process
corresponds essentially to the overcoming of molecu-
lar chain elastic interactions with its neighborhood, so
the resistance in plastic deformation at the yielding
point arises mainly from these interactions between
molecules.

The exhibited inhomogeneity during yielding is also
an interesting feature of glassy polymers under me-
chanical response. The inhomogeneous nature of
shear deformations through yielding with the appear-
ance of characteristic sheared regions led Bowden and
Raha9 in the development of a rate-activated process
model using the basic principles of dislocation theory.
From a different point of view G’Sell and Jonas,10

using the well-known expression of Orowan for the
plastic strains in metals, attain an accurate represen-
tation of stress–strain curves and all accompanied fea-
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tures of polymers like strain softening, transition phe-
nomena, physical aging, and softening after cycling
loading.

In this study we tried to describe a three-dimen-
sional mechanical response of glassy polymers using
three different approximations. At the beginning the
Boyce, Parks, and Argon model (BPA)11–13 was pre-
sented and adjusted appropriately whereas uniaxial
tension and compression tests were carried out for its
calibration in a wide strain rate range. A specific ma-
terial was used with representative behavior that un-
der strain conditions of tests exhibited distinctive
yielding peak followed by strain softening and hard-
ening at the final stage. For the strain rate dependence
of yielding stress, Argon’s and Eyring’s relations were
applied, whereas the hardening stage was approxi-
mated using a three-chain model. For the initial vis-
coelastic part, appropriate linear viscoelastic models
were applied but nonlinear viscoelastic approxima-
tions were used and investigated as well. In the BPA
model the stress drop is connected with the variation
of athermal shear resistance to which we accept a
progressive decrease versus developed plastic strains.
Finally, the dependence of yielding stress from load-
ing conditions was given through the corresponding
dependence from hydrostatic pressure. Applying
G’Sell and Jonas’10 model we supposed that the den-
sity of nucleated plastic sites is increased linearly with
stresses using Gilman and Johnston’s10 approxima-
tion. Besides the comparison of the last two approxi-
mations, a different theory—which is based on Ru-
bin’s kinematics formulation initially developed for
time evolution of microstructure variables in metals—
was attempted in the plastic behavior of glassy poly-
mers. In the present analysis we considered the rate of
plastic rotations at the beginning to be zero and we
followed the same approximations as the BPA models
for the different stages. The application of these con-
siderations in the examined polymer gave interesting
results not only for this specific material but also for
the applied models.

EXPERIMENTAL

Materials—Preparation and manufacturing of
specimens

In obtaining a representative mechanical response of a
polymer matter, we used as material reference a net-
work polymer, with relatively low glass transition
temperature. This is obtained by an epoxide system
with low molecular weight (�700), which is prepared
from the diglycydyl ether of diphenol A. The three-
dimensional stereochemical formula is given in Figure
1. The weight ratio of the two constituents used was
100:50 resin/hardener. The attentive mixing in the
above-mentioned ratio followed adequate degassing
in vacuum pump. Consequently, for the case of tensile

testing, the casting was carried out in appropriate-
shape molds so as the resulting casts have the form of
thin plates with thickness of 2.5 mm. From these spe-
cific plates dog-bone-shape specimens were manufac-
tured with 1.5 cm width and 6.5 cm gauge length. This
was followed by an annealing of specimens at 45°C for
12 h so as to complete the curing and also to remove
the remaining stresses.

To perform unidirectional compression tests, appro-
priate cylinder specimens were prepared with diame-
ter 1.5 cm and height 2 cm. For this reason, casting was
carried out in appropriate cylinder silicon molds.
From the extracted casts we shaped specimens in the
desire dimensions. After the manufacturing of speci-
mens, their tempering at 45�C for 12 h is followed so as
to complete the postcuring procedure and also to re-
move the remaining stresses.

Uniaxial extension loading

The tests were carried out with an Instron type 1121
extension testing machine with capacity of 1 ton. Dur-
ing the tests the values of the exerted loads and im-
posed extensions were recorded through a suitable
interface. At the same time direct electronic storage of
the received values was carried out through appropri-
ate software installed into the testing machine. For
accurate receiving measurement of strains at the initial
stage we used strain gauges so the exact determina-
tion of the elastic response of materials was extracted.

To obtain true stress–strain curves the following
relations were applied:

� �
P
A0

�1 � �n� � �n�1 � �n� (1a)

and

� � ln�1 �
�l
l0
� � ln�1 � �n�, (1b)

where � and � are the true stresses and strains and �n

and �n are the corresponding nominal values, A0, l0
are the initial values of cross section area and length of
specimen and �l is the change of length during defor-

Figure 1 Three-dimensional stereochemical formula of
DGEBA. Determination of molecular parameters.
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mation. At the same time the true strain rate also is
calculated through the relation

�̇ �
d ln�1 � �n�

dt �
�̇n

1 � �n
. (2)

The crosshead speed of the loading machine varied
from 0.1 to 10 mm/min resulting in a corresponding
range of strain rates (�̇) of specimens from 2.2 � 10�5

to 2.2 � 10�3/s (see Table I). The corresponding yield-
ing stresses (�y) are also included in Table I.

In Figure 2 true stress–strain curves are presented
for uniaxial tension loading and for various strain
rates. As it is shown from this plot the increasing
strain rate doesn’t result in a significant differentiation
on the initial viscoelastic stage of the diagram, with
the linearity remaining generally at the same bounds,
followed by a monotonous increase in yielding stress.
In Figure 4 the variation of observed yield stress in
respect to the logarithmic strain rate is shown, exhib-
iting–without loss of accuracy—an almost linear cor-
relation between the two quantities:

�y � 5.14 ln �̇ � 95.7 �MPa�. (3)

This result is in agreement with Eyring’s and Argon’s
approximations. In Eyring’s consideration an admis-
sion has been made that the applying stress causes a
flowing in polymers analogous to viscous theory. Ac-
cording to this theory, the combined effect of stress �
and thermal energy kT, where k is the Boltzmann
constant, results in the distraction and reconstruction
of bonds between molecules. If we consider an action
in the direction of loading and another one in the
opposite direction, we find that the strain rate will be
given via appearing stress, from the relation

�̇ � �̇0exp���Ha � �a�y

kT �, (4)

where ��a is the activated enthalpy, �a is activated
volume, and �̇0 is the fundamental rate factor. The
preceding equation can be accordingly written as

�y � 	 � 
 ln �̇, (5)

making use of the suitable relations which correlate �y
with �y and �y with �y.

The above dependence is in agreement with the
experimental results of Expression [3], identifying the

TABLE I
Yielding Stresses via Strain Rates for Tension Loading

�l/�t (mm/min) 0.1 0.2 0.5 1 2 5

�̇ (10�4/s) 0.22 0.44 1.11 2.2 4.4 11.1
�y (MPa) 41.5 44.5 48.1 50.6 55.9 62.1

Figure 2 True stress–strain curves under unidirectional tension loading at various strain rates. Material: epoxy resin.
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conclusion that the yield stress is proportional to the
logarithm of the strain rate.

From an other point of view, based on Argon’s
theory we obtain a similar expression for shear yield
stress �y,

�y �
G
8 �1 �

kT
G�2r3 ln��̇0

�̇ ��
6/5

, (6)

where G is the shear modulus, r the molecular radius,
and � is the angular rotation of molecular segments.

Making the approximation that the exponent 6/5 of
the right part of this equation is near to unity, the
preceding relation turns to Expression [3], a fact that
shows the intensive similarity of the two models. This
fact results in the conclusion that their differences
aren’t remarkable for the present deformation pro-
cesses. So these two relations appear to be equivalent
for our study.

As is obvious from the stress–strain plots, the strain
that reveals the maximum stress—ield stress—doesn’t
change remarkably and fluctuates around the value of
3.2%. Similar behavior to yield stress variation ap-
pears also for the yield stress drop in the strain soft-
ening stage. The increase of strain rate leads to a
corresponding spread of stress drop at the range of 15
to 25%. Also a relatively small change of ductility that

fluctuates from 8.4 to 5.6% is observed, whereas the
final fracture stress is also affected, appearing with
generally greater values: from 36.6 to 53.2 MPa (Fig. 2).

Compression loading

The tests were carried out on a Instron TT-CM (5 ton)
testing machine. Collecting the experimental data of
imposing loads and displacements results in a similar
behavior to that in tension loading tests. The calcula-
tion of true stresses and strains plots has been made
using the expressions applied in the corresponding
case of tension tests.

As in unidirectional tension loading, the study of
material mechanical behavior in a wide range of strain
rates has been carried out. In Table II the correspond-
ing results of yield stresses for various rates are also
included.

In Figure 3 we present the true stress–strain curves
for unidirectional compression loading and for vari-
ous strain rates. In Figure 4 we plot the variation of
yield stress with logarithm of strain rate in unidirec-
tional compression loading. We notice directly that the
linear dependence of these two quantities is described
from the relation

�y � 4.26 ln �̇ � 103.6 �MPa� (7)

TABLE II
Yielding Stresses via Strain Rates for Compression Loading

��l/�t (mm/min) 0.5 1 2 5 10

��̇ (10�3/s) 0.36 0.73 1.5 3.7 8.2
��y (MPa) 70.5 72.7 75.5 78.4 84.3

Figure 3 True stress–strain curves under unidirectional compression loading of epoxy rein for various strain rates.
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On the other hand the yield strain doesn’t appear to
change noticeably and fluctuates around the value of
4.3%.

After the stage of yield, a characteristic drop of the
imposed stress appears. But a question arises: is this
an intrinsic strain softening or does it appear to be due
to adiabatic heating? Because this drop appeared also
for very small strain rates, the case of adiabatic heating
is excluded. Consequently, the strain softening, espe-
cially in the case of compression loading, should result
from a pure intrinsic feature of the material.

A stabilization of imposed stresses follows the ap-
pearance of a relative minimum. Finally, in the last
stage, a continuous increase of imposed stresses ap-
pears to the point of fracture. In this stage—the hard-
ening stage—we notice uniformity in material behav-
ior at different rates. This fact expresses the intrinsic
hardening that the material exhibits due to the devel-
oping strains, consequently leading gradually to
strong resistances (greater than that of yield stresses)
until, finally, failures. Its description is approximated
with great accuracy using the rubber elasticity theory.
Indeed, a part of the mechanical work that is supplied
in a polymeric material during its deformation is spent
for its internal energy changes and the other part is
used for its entropic changes. In glassy polymers, dur-
ing cooling, the statistical random chain model is pre-
served below the glass transition temperature. So the
orientation, which takes place during the imposing of
large deformations, provokes effective changes in mo-
lecular conformations, which result in entropic
changes. Understandably, the strain hardening that
appears in polymeric materials, after the stage of
yielding at final stages of deformation, could be attrib-
uted to the entropic variations of chains. Although in

thermoplastic materials the application of the relevant
theory demands the introduction of the concept of
entanglements and the number of active chains, it is
not a necessity for the case of crosslinking polymers,
where a constant three-dimensional lattice appears.

Finally, the ductility of the tested specimens (�68%)
doesn’t seem to be affected seriously as happened
with the fracture stress, which fluctuates for all rates
around the value of 105 MPa, with a small variation.

Summarizing the above observations of the two
kinds of loading tests of this study, we result to the
following conclusions. The development of ductile be-
havior, at least in a wide spread of rates at the testing
temperature, results in obtaining large deformations
of the tested material with local maximum to appear
in the stress–strain diagrams.

More specifically, the initial linear response of the
stress–strain diagram is followed from a nonlinear
response that is completed with the appearance of a
characteristic maximum yield limit. In the following, a
significant softening with a stress drop stabilizing in
values obviously lower from yield stress is obtained.
In compression tests the development of strong hard-
ening is obvious, whereas in tension loading tests this
effect appeared only for very low strain rates. Also, in
the case of tension loading due to geometrical condi-
tions the material exhibited is less ductile. Due to the
cross-section reduction and from the existence of
stress singularities around its structural imperfections,
true stresses arise rapidly, leading to a failure mecha-
nism under small deformation. From the other hand,
during the application of compression loads, localized
deformations aren’t observed, so the material strongly
resists even under large deformations. In this stage the
stresses gradually increase, a fact that is recorded as

Figure 4 Variation of yielding stress via strain rate under tension and compression unidirectional loading.
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an entropic hardening due to the development of plas-
tic deformations.

But the most crucial difference is the fact that the
yield stresses during compression are lightly but sys-
tematically greater than that of the tension loading
case. This phenomenon could easily be explained as a
consequence of yield stress dependence from hydro-
static stress. The modified law of von Mises criterion
can then be applied:

��1 � �2�
2 � ��2 � �3�

2 � ��3 � �1�
2 � 6��y

0 � p�2

(8)

or

�y � �y
0 � p, (9)

so the application of compression stresses will result
in the increasing of appeared characteristic limit for
yield, while under the application of tension loads, the
corresponding limit will be decreased.

In the following, we attempt to describe all previous
features of polymer mechanical response using three
different approximations.

APPROXIMATION MODELS

Simulation of Boyce–Parks–Argon (BPA)11

Constitutive formulation

In the case of unidirectional loading the deformation
tensor F is given by

F � � �1 0 0
0 �2 0
0 0 �3

� � �
� 0 0

0
1

��
0

0 0
1

��
�, (10)

where � 	 �1 is the main stretching to the direction of
imposed load where the isovolume condition has been
taken into account. Then the Cauchy stress tensor will
be given as

T � � � � B1 0 0
0 �B2 0
0 0 �B3

�. (11)

In the above expressions Bi are the back stresses—due
to entropic hardening—while � is the stresses in the
absence of back stresses.

The hydrostatic stress pressure will be

P �
1
3 �tr T�I � � p 0 0

0 p 0
0 0 p

�, (12)

where

p �
� � �B1 � B2 � B3�

3 (12a)

so the deviatoric tensor T
 will then be given as fol-
lows:

T� � T � P

� �
2�� � �B1 � B2��

3
0 0

0 �
� � �B1 � B2�

3
0

0 0 �
� � �B1 � B2�

3

�.

(13)

The equivalent shear stress can be calculated now
from the sequel equation:

� � �1
2 tr�T��2�1/2

� ��4�2

9 �
�2

9 �
�2

9 � 1
2�

1/2

� �� � �B1 � B2��/�3. (14)

The constitutive equation of stresses for large defor-
mations, which is given by

T �
1
J Leln Fe, (15)

can be simplified in the case of isotropic material in
unidirectional load as follows

� � E ln �e (16)

or

� � E�el. (17)

So the equivalent shear stress will be given finally by

� � �� � �B1 � B2��/�3 � �E ln �e � �B1 � B2��/�3

� �E�el � �B1 � B2��/�3. (18)

The symmetric part DP of the plastic velocity gradient
tensor LP is obtained from the associate flow rule as
follows,

Dp � �̇pN, (19)

where the rate of plastic strains according to Argon’s
theory will be
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�̇p � �̇0exp��
As̃
T �1 � ��

s̃�
5/6�	, (20)

with s̃ expressing the athermal shear resistance de-
pending on the hydrostatic pressure and rate of plastic
deformation:

s̃ � s � ap (21)

ṡ � h�1 �
s

sss
� �̇p (22)

with

s0 �
0.077

1 � �
. (23)

The sss is the limiting value of s in stable condition and
h is the slope of yield drop with plastic strain. From
the multiple decomposition of the deformation gradi-
ent tensor F and the additive relation for the velocity
gradient L we obtain

�̇tot � �̇el � �̇pl (24)

or

�̇el � �̇tot � �̇p/�3 (25)

�̇el � �̇tot �
1

�3
�̇0exp��

As̃
T �1 � ��

s̃�
5/6�	. (26)

Combining Eqs. [25] and [20] resulted in the following
relation for the rate of elastic strains:

d�el � � �̇tot �
1

�3
�̇0exp��

As̃
T �1 � ��

s̃�5/6�		dt, (27)

s̃ � s � ap, (28)

ds � �h�1 �
s

sss
� �̇p�dt, (29)

p �
1
3 tr T, (30)

s0 � 0.077/1 � �, (31)

� � �� � �B1 � B2��/�3, (32)

and

� � E�el, (33)

where the constants �̇0, , �, 	, h, sss, and v should be
determined.

The elasticity modulus E and Poisson’s ratio � resulted
directly from the stress–strain curves in small deforma-
tions, while �̇0 and A are determined easily through the
construction of diagrams ln �̇p via [�/(s0 � ap)]5/6 as they
are given in Figure 5a and b for tension and for com-
pression, respectively, (see Ref. 11). The values that re-
sulted for �̇0 and  are included in Table III. The corre-
sponding figures could verify the linear dependence of
the two quantities that simply confirm the preceding
analysis. Finally, the determination of B1 and B2 will be
given in the following paragraph.

Strain softening and hardening

In the approximation of the post yield region of stress–
strain curves, where a characteristic stress drop is ob-
served even for true stress–strain curves, a basic sugges-
tion will be undertaken. In the BPA model a homogeni-
zation was tried for a general inhomogeneous behavior
during strain softening of polymers. So we adopt the
assumption that the macroscopically observed stress
drop was due to the progressive diminishing of the
athermal shear resistance via appearing plastic strains.
The rule that governs this variation of athermal shear
resistance s will be given from the relation

d
dt s � h�1 �

s
sss
� d

dt �p, (34)

where h is the slope of stress drop and sss is the final
preferable value of s.

The rate h of stress drop via the deformation could
be calculated through

h 

�s
��p �

1

1 �
s0

sss
� . (35)

From stress–strain curves for compression, we notice
that the percentage of stress drop ��/�max, where ��
	 �max � �min during the stage of softening is relatively
independent of strain rate and so the ratio sss/s0 is con-
sidered to remain constant. Comparing now maximum
and minimum yield stresses at this stage, we obtain

sss/s0 � 0.825 (36)

or

sss � 0.825 � s0. (37)

The dependence of yielding with pressure could
also be concluded easily from the above equations
modifying the athermal shear resistance s by taking
into account the pressure dependence as in Eq. [21].
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The description of strain hardening at the last stage
is introduced through the Langevin spring. In our case
we will follow the three-chain model of James and
Guth12 (an interesting alternative approximation
could be the model of eight chains of Arruda and
Boyce13 or the full-chain model of Wu and van der
Giessen 14). According to James and Guth22 the prin-

cipal back stresses in three dimensions will be given
from the consequence relations

Bi � CR
�N
3 �Vi

pL�1� Vi
p

�N� �
1
3 

j	1

3

Vj
pL�1� Vj

p

�N�� , (38)

Figure 5 (a) Diagram of the approximation of A and �̇0 coefficients of the BPA model from tension loading results. (b)
Diagram of the approximation of A and �̇0 coefficients of the BPA model from compression loading results.
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where L�1 is the inverse Langevin function and Vi
p is

the principal plastic stretching.
The material variables that are required for the ap-

proximation of entropic resistance is the rubber mod-
ulus CR and the number of rigid links � between
entanglements or crosslinks. The modulus CR could be
found, estimating the number of molecular segments
n per volume unit in this specific temperature and
using the following relation:2,11

CR � nkT �
�RT
Mc

. (39)

Through the stereochemical form of epoxide resin
(Fig. 1), we could calculate their molecular weight Mc.
So the preceding relation results easily to the value

CR � 9 MPa. (40)

The number of rigid links � between entanglements
or crosslinks could be calculated through tension tests
as the limiting stretching of material. For the Langevin
distribution N is equal to the square of limiting
stretching �0. Due to the reduced ductility of the ma-
terial during the tension test we could alternatively15

estimate N one more time thought stereochemical
form of epoxy resin, from which could be extracted
(see Fig. 1) the value 2.

The magnitudes of quantities as were calculated for
this specific material in the case of tension and com-
pression loadings are presented in Table III.

Summarizing all previous results, a complete ap-
proximation of stress–strain response can be obtained.
The Argon relation is selected for the description of
yield stage with stress drop and dependence with
pressure, whereas for the stage of strain hardening the
Wang and Guth formalism is selected. Moreover, the
use of a simple Hookean spring for the description of
initial part of curve could give a good approximation
of the magnitude of yield stress both in tension and in
compression. But this ceases to happen for the initial
viscoelastic stage and for yield strain, because they
exhibit large diversions from experimental findings in
both cases.

An important improvement is expected to arise us-
ing a viscoelastic analog instead of the simple
Hookean spring. The introduction of Maxwell ana-
log—with an elastic spring E and a viscous dashpot

�—in this specific model improves most the results in
the initial part of curve. Generally, a better efficiency
of initial viscoelastic area and better approximation of
yield strain appear, even though great diversions are
discerned for low strain rates because the use of a
simple relaxation time couldn’t simulate exactly ex-
perimental results.

The introduction of a greater number of elements in
the viscoelastic models used could lead to a better
description. So, the efficiency of the BPA model, as we
expected, is enhanced noticeably with the introduc-
tion of three parametric and a four parametric stan-
dards16 with corresponding constitutive equations,

� � �
d�

dt � Ea� � �Em � Ea��
d�

dt , (41)

(standard linear solid)
where

� �
�m

Em
(42)

and

� � ��1 � �2�
d�

dt � �1�2

d2�

dt2 �
d�

dt ��1 � �2�

� ��1�2 � �2�1�
d2�

dt2 , (43)

(four parametric model—composed of springs Ei and
dashpots �i—with a liquid like character)
with

�1 �
�1

E1
and �2 �

�2

E2
. (44a,b)

An even better approximation of the real viscoelastic
phenomena could be obtained with a theoretical infi-
nite number of spring elements and dashpots using a
generalized Maxwell element and a generalized Voigt
element. All the parameters values with a four para-
metric model are given in Table I and the stress–strain
curves that we get from the above model are shown in
Figure 6a and b for tension and compression, respec-
tively.

TABLE III
Mechanical Properties and Constants for the BPA Model

�̇0 (/s)
A

(K/MPa) �y

ty
(s)

E
(GPa)

E1
(GPa)

E2
(GPa) T (K) � 	

Cr
(MPa) N

h
(MPa) sss/s0

Tension/ 4 � 107 78.4 0.045 50 3.1 0.2E 0.8E 295.5 0.394 0.231 9 2 1100 0.825Compression 3 � 1015 130 600

Note. Where ty 	 E1/�1 and �y 	 �̇0E2/�2.
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G’Sell and Jonas’ constitutive model10

In the previous presentation the variation of plastic
strain is considered a predominantly activated rate
process where the observed strain rate changes expo-
nentially with the imposed stress. A further assump-
tion could be done regarding the density of the actual
plastic sites with varying stress and specifically to a
first approximation that it is changing linearly with
the emergence of strain.

So, according to the consideration of G’Sell and
Jonas the total strain � is analyzed in three compo-
nents:

� � �el � �vis � �pl. (45)

The viscoelastic component �vis could be approxi-
mated first through a Kelvin–Voigt model from which
it is deduced that

Figure 6 (a) The approximation of stress–strain curves with the Boyce–Parks–Argon model and using the four-parametric
analog for the initial part of the curves. Unidirectional tension loading. (b) As in (a) but for unidirectional compression
loading.
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d
dt �vis �

� �

E�

� �vis�
�R

, (46)

where �R is the mean retardation time and Ev is the
relaxation modulus.

The component of rate of plastic strain �pl following
an analysis similar to metals is given generally from
the Orowan relation,

�̇pl � ���*, �� � ���*� � b� , (47)

where � is the mean length of plastic waves, � is the
mean velocity of propagation of waves, and b� is the
mean displacement of elementary local shearing. If we
make the assumption that the nucleation and/or prop-
agation of waves are activated rate processes and also
that the density of plastic waves could be increased
gradually as the deformation proceeds, in a first ap-
proximation this increase of wave density should
change linearly up to a point (strain) of equilibrium
establishing. Then the following relation for plastic
strain rates is extracted,

�̇pl � �̇1exp�w��* � �*1�
kT � �

�

�c
, (48)

(where �* and �*1 will be defined in Eqs. [52], [53], and
[54].

In the preceding expression, it was considered that
at the transition stage the variation of density of the
generated plastic events is given by

�
 � �
�

�c
�for � � �c� (49)

and

�
 � � �for � � �c�. (50)

In this model the elastic component of the rubber
behavior of polymer during the hardening stage is
given in a similar way as in the BPA model. The
dependence of yield stress on strain rate is attributed
through the Eyring’s relation, while the dependence of

pressure is obtained through the corresponding de-
pendence of athermal shear resistance. So, summariz-
ing these remarks, the following system of differential
equations is obtained:

�̇ � �̇el � �̇vis � �̇pl (51)

�̇pl � �̇1exp�w��* � �*1�
kT � �

�

�c
(52)

�*1 � a ln �̇ � b (53)

d�

d�
� E�1 � exp�w�� � �i � �*1�

kT � �
�n

�c
	 (54)

and substituting the corresponding viscoelastic equa-
tions the following expressions result:

d�

d�
� E�1 � exp�w�� � �i � �*1�

kT � �
�n

�c
	 �

�

�̇�r
(55)

(Maxwell)
or

d�

d�
� E1��1 �

E2

E1
� � exp�w�� � �i � �*1�

kT � �
�n

�c
	

�
�

�r�̇
�

E2�n

�r�̇
(56)

(three parametric)

� � �n� (57)

�i � CR
�N
3 �Vi

pL�1� Vi
p

�N� �
1
3 

j	1

3

Vj
pL�1� Vj

p

�N�� . (58)

So, the parametric values defined above are given
in Table IV, and Figure 7a and b shows the theoret-
ical stress–strain curves as obtained from the above
set of equations with a three parametric standard
solid.

TABLE IV
Mechanical Properties and Constants for G’Sell and Jonas’ Model

a
(MPa)

b
(MPa) �c

w/kT
(m3/MJoule) T (K)

E
(GPa) � a

Cr
(MPa) N

Tension/ 6.5 105 3.2 0.04 295.5 3.1 0.394 0.231 9 2Compression 4 100.3
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Rubin’s kinematics formulation of plastic
behavior17,18

It has been made clear from many experimental ob-
servations such as in works by Oleinik et al.,15 Argon,8

and Hasan and Boyce,19 that deformations in a vis-
coelastic material have an intensive inhomogeneous
nature. But despite all these observations, mainly in
the BPA model and partly in G’Sell and Jones’ approx-
imations, the main assumption of homogeneous de-

formation of materials has been made. An alternative
way to include the observed inhomogeneity during
deformation is the application of Rubin’s approxima-
tion. Through this specific analysis it becomes possi-
ble, using microstructural material variables, to under-
stand the expected mechanical response.

According to Rubin in the case of uniaxial experi-
ment of an isotropic material the rate of elastic defor-
mation ȧm is given by the equation

Figure 7 (a) The approximation of true stress–strain curves with G’Sell and Jonas’ model using a three-parametric standard
solid. Unidirectional tension loading. (b) As in (a) but for unidirectional compression loading.
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ȧm

am
� � 1 �



3k �am
3 � 1
am

�
1 �



9k �5am
3 � 2
am

��� ȧ
a �

�̇p

18 �am
3 � 1
am

3 �

� �4am
6 � 2�� , (59)

where am and ȧm represent the elastic and the rate of
elastic stretching, a and ȧ are the total and the rate of
total stretching, and �̇p is the rate of plastic deforma-
tion (Spathis and Kontou20,21). k and  are the bulk
and shear modulus, respectively.

If we adapt in this equation the micromechanical
model for �̇p as introduced by Argon,

�̇p � �̇0exp��
As0

T �1 � ��

s0
�5/6�	, (60)

and the additional equations for the rate of athermal
shear resistance

d
dt s � h�1 �

s
sss
� d

dt �p (61)

s̃ � s�1 � ap/s� (62)

with the constitutive equation of viscoelastic behavior

� � E�y�1 � exp��
a � 1

�y
�� (63)

(Maxwell)
or

� � E1ȧ�1�1 � exp��
am � 1

ȧ�1
��

� E2�y�1 � exp��
am � 1

�y
��, (64)

(four-parametric)
where

p �
1
3 tr T (65)

� � �� � �B1 � B2��/�3 (66)

B1 � CR
�N
3 ��pL�1� �p

�N� �
1
3 �pjL

�1� �pj

�N��
and

B2 � CR
�N
3 �1/��p L�1�1/��p

�N � �
1
3 �pjL

�1� �pj

�N�� ,

the viscoplastic description of the deformed materials
can be obtained. The solution of this set of equations is
plotted in Figure 8a and b and the model parameters
are given in Table V.

RESULTS AND DISCUSSION

In Figure 6a and b the stress–strain curves are pre-
sented following the BPA model where the four para-
metric description both for tension and for compres-
sion is also used. In this way, a satisfactory approxi-
mation to the experimental results is obtained. The
strain rate effect and the effect of pressure in the stage
of yield, the true strain softening, and that of harden-
ing are also described.

Moreover, we go on to describe with good accuracy
both the strain softening process and hardening. But
this specific model couldn’t give the dependence of
the variation in stress drop with strain rate, exhibiting
almost a constant percentage of stress drop after the
yield point in all cases, as could be noticed directly in
Figure 6, especially for the case of tension experi-
ments. Also at hardening stage following experimen-
tal values, an inversion of the corresponding plots at
different strain rates is observed. A satisfactory expla-
nation for this kind of inversion is the adiabatic heat-
ing of specimens as the strain rate is increased, a
situation that could be described accurately using this
model and modifying appropriately the correspond-
ing parameters.

Applying G’Sell and Jonas’ description it is possible
to obtain from the experimental data the ultimate
value of strain under which an equilibrium in density
of plastic waves is attained (� � 25–30%). In this study
we use the approximation of Gilman and Johnston of
continually density increasing, a fact that didn’t dif-
ferentiate the whole procedure of approximation.

From the corresponding Figure 7a and b we see that
G’Sell and Jonas’ model, although it approximates the
experimental results with a good accuracy with re-
spect to the other two models, manages to attribute
better all the revealing features: the viscoelastic part of
the curve, variation of yield stress with strain rate and
the stage of hardening, and the dependence of stress
drop with strain rate.

Also through G’Sell and Jonas’ model—and even
more in Rubin’s analysis—the stage after yield and
mainly the stage of strain softening could be approx-
imated, keeping in mind the inhomogeneous feature
of deformation and avoiding the use of non full de-
termine quantities like athermal shear resistance as in
the BPA model.

Comparing now the results plotted in Figures 8a
and b from Rubin’s analysis with those in Figure 6a
and b we conclude that a relatively small improve-
ment was attained according to the corresponding
analysis of BPA.
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TABLE V
Mechanical Properties and Constants for Rubin’s Model

�̇0 (/s)
A

(K/MPa) �y

ty
(s)

E
(GPa)

E1
(GPa)

E2
(GPa) T (K) � 	

Cr
(MPa) N

h
(MPa) sss/s0

Tension/ 1 � 108 72 0.045 50 3.1 0.2E 0.8E 295.5 0.394 0.231 9 2 60 0.83Compression 6 � 1015 123 0.06 35

Figure 8 (a) The approximation of true stress–strain curves with Rubin’s analysis using a four-parametric standard liquid.
Unidirectional tension loading. (b) As in (a) but for unidirectional compression loading.
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Recapitulating the previous results, many interest-
ing elements that concern the mechanical response of
glassy polymers can be extracted.

At the initial stage of the stress–strain diagrams of
glassy polymers the diversion from linear dependence
is revealed; this fact could be attributed mainly to the
appearance of viscoelastic events, which are magni-
fied as the imposed stress increases. The use of linear
viscoelastic models could sufficiently describe this be-
havior, but for detail countenance the use of nonlinear
viscoelastic analysis is required. This diversion from
linearity reaches a limiting situation where a maxi-
mum is observed. The existence of this maximum is
connected with the appearance of viscoplastic defor-
mations in material mainly localized in some regions
of the specimen. A drop in demanding flow stress
accompanies the revealing inhomogeneity. Depending
now on the model used (Rubin, G’Sell–Jonas), this
drop could be attributed to transition phenomena ei-
ther of rearranging and reorientation of molecular
chains (Rubin) or of a gradually increasing density of
the appearing plastic shear transformations (G’Sell
and Jonas).

Following the results contained in Tables III and V
we can conclude that the values of h—a magnitude of
the rate of strain softening—in the case of Rubin anal-
ysis appear to be mostly lower (35 to 60 MPa) than the
corresponding values of the BPA approximation (600
to 1100 MPa). These decreasing until relatively zero
values could indicate that the following kinematics is
closer to the accurate representation of the predomi-
nant situation.

Based on relation (59) from Rubin’s analysis,

ȧm

am
� f�am�� ȧ

a � �g�am�� , (59
)

we can estimate the plastic multiplier � at equilibrium
state,

ȧm

am
� 0, (59a)

as

� �
ȧ
a . (59b)

This result means that in the equilibrium state—peak
of the yield limit—the rate of revealing plastic strain
will be inversely proportional to the current deforma-
tion. Consequently, the drop in the plastic strain rate
versus total deformation will cause a corresponding
decrease in the required stress for continuing flow (G.
Spathis, 2002). This conclusion, directly related to the

kinematics description of Rubin’s analysis, could help
us to describe also the observable strain softening that
the materials exhibit, possibly without the introduc-
tion of additional terms.

As far as the yield phenomenon is concerned, it
seems plausible that an activated rate process is taking
part and could be described equivalently either from
the Eyring equation or the Argon relation where the
logarithm of plastic strain rates in relaxation state is
proportional to applying stress.

Finally, the stage of hardening of glassy polymers is
approximated with high accuracy through a proce-
dure proportional to the entropic hardening of rub-
bers, using mainly the relations of non-Gaussian dis-
tribution and the Langevin function.

CONCLUSIONS

The mechanical behavior of a polymer could be ana-
lyzed in viscoelastic, yielding, postyielding, and hard-
ening stages. In this study we manage to describe
these areas in a unique form. Using three different
models we approximate the real response with good
accuracy. The interesting point here was that the ap-
plication of Rubin’s kinematics seems to simplify the
viscoplastic response of the polymer, probably show-
ing a more realist description.
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